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ABSTRACT

This report presents new and recently developed concepts which are useful

for obtaining and solving equations of motion of multibody mechanical systems

with translation between the respective bodies of the system. These concepts

are then applied in the study of human head/neck systems in high acceleration

configurations.

The developed concepts include the use of Euler parameters, Lagrange's

form of d'Alembert's principle, _quasi-coordinates, relative coordinates, and

body connection arrays. This leads to the development of efficient computer

algorithms for the coefficients of the equations of motion. The developed

procedures are applicable to "chain-link" systems such as finite-segment cable

models, mechanisms, manipulators, robots, and human body models.

The application with human head/neck models consists of a 54 degree of

freedom, three-dimensional system representing the head, the vertebrae, and

the connecting discs, muscles, and ligaments. The computer results for the

system in a high acceleration configuration agree very closely with available

experimental data.
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INTRODUCTION

Recently there has been considerable interest in the development of

equations of motion for multi-body mechanical systems-that is, systems

containing many rigid bodies. There are two reasons for this interest:

First, many complicated mechanical systems and devices such as manipulators,

robots, and biosystems, can be effectively modelled by systems of rigid bodies;

and second, it has just recently been possible, with the aid of high-speed

digital computers, to obtain efficient numerical solutions of the governing

dynamical equations. The emphasis of researchers working with multi-body

systems has therefore been the formulation of equations of motion which can

easily be developed into numerical algorithms for computer codes.

Most of this recent research interest has been with multibody systems

consisting of linked rigid bodies - that is, systems of connected rigid bodies

such that adjacent bodies share at least one common point and such that no

closed loops or circuits are formed. Such systems are sometimes called

"general-chain", "open-chain", or "chain-link" systems. Figure 1. depicts

such a system. General chain systems are useful for modelling chains, cables,

manipulators, teleoperators, antennas, and beams.

There are some systems, however, where the restriction to linked rigid

bodies precludes a satisfactory modelling. For example, with a human body

model it is frequently advantageous to simulate neck stretch during periods

of high acceleration such as in crash environments. Such a simulation is not

possible with a fully linked model. Therefore, it is of interest to generalize
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the multibody models to include translation between the bodies. Figure 2.

depicts such a generalization of the system of Figure 1.

This report presents the results of recent research efforts to develop

efficient, computer-oriented algorithms for obtaining and solving the gover-

ning dynamical equations of motion for these generalized multibody systems.

The report also contains a summary of results of the application of these

procedures with human head-neck systems in high acceleration configurations.

The balance of the report is divided into six parts with the first part

providing a sumnary of earlier efforts to model multibody systems. This is

followed by two parts which contain the general geometrical and kinematical

background necessary for the development of the governing equations. The

governing equations themselves are developed in the next part, and an applica-

tion of the developed procedures in studying head-neck dynamics is presented

in the subsequent part. The final part contains a summary discussion and

suggestions for other applications of the developed procedures.

.4
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PREVIOUS MULTIBODY SIMULATION EFFORTS

References [1-36]* provide a summary of approaches taken to obtain

efficient, computer-oriented formulation of the equations of motion of

multibody systems such as in Figure 1. In one of these approaches [19,29,33],

it is shown that it is possible to obtain expressions for the governing

equations in a form where the coefficients are easily evaluated through

computer algorithms. This approach uses Lagrange's form of d'Alembert's

principle, as exposited by Kane and others [37,38,39], together with relative

orientation coordinates [40,41,42], to obtain the governing equations.

Although this principle is not as widely used as, for example, Newton's

laws or Lagrange's equations, it has the advantage of automatic elimination

of non-working internal constraint forces without the introduction of tedious

differentiation or other calculations.

Recently, it has been suggested by Huston, et.al., [42,43], that further

efficiencies in the development and solution of the governing equations could

be obtained through the use of Euler parameters as described by Wittaker [44]

and Kane and Likins [451, together with the quasi-coordinates suggested by

Kane and Wang [46]. Specifically, it is claimed [42,43] that using Euler

parameters together with relative angular velocity components as generalized

coordinate derivatives allows for the avoidance of geometrical singularities

encountered with using Euler angles or dextral orientation angles to define

the relative orientation of bodies. (Recall that Euler angles may be defined

by aligning mutually perpendicular axes fixed in the bodies and then

successively rotating one body relative to the other about the third, first,

*Numbers in brackets refer to references at the end of the report.
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and third axes, whereas dextral orientation angles may be defined by

successive rotations about the first, second, and third axes.)
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PRELIMINARY GEOMETRICAL CONSIDERATIONS

Body Connection Array

Consider a mechanical system such as depicted in Figure 1. To

develop an accounting routine for the system's geometry, arbitrarily

select one of the bodies as a reference body and call it B1 . Next,

number or label the other bodies of the system in ascending progression

away from B1 as shown in Figure 1. Now, although this numbering procedure

does not lead to a unique labeling of the bodies, it can nevertheless be

used to describe the chain structure or topology through the "body connection

array" as follows: Let L(k), k-l,...,N be an array of the adjoining

lower numbered body of body Bk. For example, for the system shown in

Figure 1., L(k) is:

L(k) - (0,1,1,3,1,5,6,7,6) (1)

where

(k) - (1,2,3,4,5,6,7,8,9) (2)

and where 0 refers to an inertial reference frame R. It is not difficult

to see that, given L(k), one could readily describe the topology of the

system. That is, Figure 1. could be drawn by simply knowing L(k). It is

shown in the sequel that L(k) is useful in the development of expressions of

kinematical quantities needed for analysis of the system's dynamics.
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Transformation Matrices

Next, consider a typical pair of .,'djoining bodies sucb as B and R

as shown in Figure 3. The general orientation of B relative to B.

may be defined in terms of the relative orientation of the dextral

orthogonal unit vector sets ni and nki (1-1,2,3) fixed in Bj and

as shown in Figure 2. Specifically nji and nki are related to each.

other as

ii SJLM i itc (_3"

where SJK is a 3 x 3 orthogonal transformation matrix defined as (47]:

SJK , j, n (4)
ur n .ji • %=k.m

(Regarding notation, the J and K in SJK and the first subscripts on the

unit vectors refer to bodies B i and B, and repeated indices, such as the

m, in Equation (3) signify a sum over the range (eg. 1,...,3) of that

index. Thus, with a computer SJKin would be the array SJKCI,M).)

From Equation (3), it is easily seen that with three bodies Bit Bk,

Bi, the transformation matrix obeys the following chain and identity rules:

SJL -WK S -I .. ..
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and

SJJ - I - SJK SKJ = SJK SJK 1  (6)

where I is the identity matrix.

These expressions allow for the transformation of components of

vectors referred to one body of the system into components referred

to any other body of the system and, in particular, to the inertial

reference frame, R. For example, if a typical vector, V, is expressed

as

v i(k) Si . V (0) (7)

then

V ( 0) = SOKii V (k) (8)

where 0 refers to the inertial frame, R.

Since these transformation matrices play a central role throughout

the analysis, it is helpful to also have an algorithm for their derivative,

especially the derivative of SOK. Using Equation (3), and noting that n0i

are fixed in R, the following is obtained:

d(SOK ij)/dt - noi • Rd nkj/dt (9)

|Ljrd
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I
where the R in Rd nkj/dt indicates that the derivative is computed in R.

However, since the nkj are fixed in Bk, their derivatives may be written

as tk x nkj where wk is the angular velocity of R in R. Equation (9)

may then be written as:

d(SOK )/dt - -e n (10)

or as

d(SOK)/dt - WOK SOK (11)

where WOK is a matrix defined as

WOK1M= -e i±man (12)

and where w are the components of wk referred to n and elmn is thekn k .on in

standard permutation symbol [47,48]. (WOK is simply the matrix whose dual

vector [48] is w .) Equation (11) thus shows that the transformation matrix

derivative may be computed by a simple matrix multiplication.

Euler Parameters

Finally, consider describing the relative orientation of B and Bk

by using the so-called Euler parameters as discussed by Whittaker [44] and

Kane and Likins (45]. It is well known [44] that Bk may be brought into any

- - - 1 16
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general orientation relative to B by means of a single rotation about an

appropriate axis. If X is a unit vector along this axis and if e is the

rotation angle, the four Euler parameters describing the orientation of Bk

relative to B may be defined as:

€I1 X d k siu (ek/ 2 )

ek2 X k2 sin(k/2)

(13)

E, x sin(ek/2)

Ek4 cos (ek/2)

where the Xk(i-,2,3) are the components of X k referred to nji the unit

vector fixed in B Clearly, the e k (i-1,2,3,4) are not independent since:

2 2 +2 2
e kl + k2 +k3 + ek4 (14)

These parameters may be related to angular velocity components by

using the transformation matricies as follows: It is shown in [44,45] that

SJK may be expressed in terms of these parameters as:
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2 2 2 . 2 2 (CklCk2-Ck3k4) 2 (ekCk3+k2 ek4)Ckl-k2- U3 k4 lk Uk4k U k2k

SJK 2 (sS +S k4) -C 22 2(e 3 -klCk4) (15)

k1~~~ ~ ~ ~ k2Uk i'2'k+k 2 .2.2kl-

(klU-k2 k4) 2(k2 k3+ k4 kl k 3  k4

Now, by solving Equations (11) and (12) for the angular velocity components,

one obtains:

kl - S01 21 SOK31 + S0K2 2 SOK 32 + S0K23 S0K33

Wk2 . SoK31 S6K + SOK32 S6K12 + SOK33 S6K13  (16)

03 S°11 s6K21 + SK 12 S6K22 + SOK13 S6K23

where the dot designates time differentiation. By using Equation (15),

these expressions may be used to express the nji components of the angular

velocity of Bk relative to B in terms of the Euler parameters as:

2c

'kl k4kl - k ' + 'k2 £k3 - £kl ek4)

~k2 -
2(,k4 £-kl +-k k k -3-'2'k)(7

k~3 - 2(-k 'k + LiU '12 + 'k4 'k3 - k3 'k4)



(Regarding notation, in the sequel "hats" refer to relative angular

velocity vectors or their components. That is,the wk represent the

angular velocity of Bk in R and w represent the angular velocity of

B relative to Bi, its adjoining lower numbered body.) Equation (17)

may now be solved for the ekl (i'*'...,4) in terms of the w,, leading

to the expressions:

Li (C4 A + -k Ck

- (-Ck J kl ' k4 Wk2 + 'l~ &3)

(18)

"k3 'k (L2 &d ' A k4 W3

tk4 k (-ekl Wkl - 'k2 k2 - 'k3 Wk3 )

This solution is quickly obtained by observing that if Equation (14) is

differentiated and placed with Equation (17), the resulting set of equations

could be written in the matrix form:

Wklik4 -'k3 'k2 -l C kl

A - 2 (19)

O'k3 -C2 Li k l k4 -C3 k

Lid L'U '-2 k3 £k4 Ck4

Li
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where "k4 is equal to the derivative of Equation (14) and has the value

zero. The square matrix in Equation (19) is seen to be orthogonal

(Ue. the inverse is the transpose) and hence, Equations (18) follow

immediately from (19) upon letting wk4 be zero.
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KINEMATICS

Coordinates

A multibody system of N bodies, with translation permitted between

the bodies will, in general, have 6N degrees of freedom. Let these be

described by 6N generalized coordinates xZ (1-l,...,6N) and let the first

3N of these be divided into N triplets describing the relative

orientation of the successive bodies of the system. Let the

remaining 3N xI also be divided into N triplets representing the relative

displacement of the successive bodies of the system. As before, let Bk

be a typical body of the system and let B be its adjacent lower numbered

body, as in Figure 3. The angular velocity of Bk relative to B (that is,

the relative rate of change of orientation) may then be written as:

A A A(20)

'k ' kl 'jl' k2j 2 ' k3 j 3

where n (j-l,...,Nj 1-1,2,3) are mutually perpendicular dextral unit
Ji

vectors fixed in B. Next, let these bodies be displaced relative to

each other with the displacement measured by the vector -k as shown in

Figure 4., where 0 and 0k are arbitrarily selected reference points of

B and Bk . 
0k, which is fixed in B is the connection point or "origin"

of Bk. Then -k may be written in the form:

-oI
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In generai, Equations (23) are non-integrable. That is, they cannot

be integrated to obtain generalized orientation coordinates x3k2

x3ki , . Thus, explicit parameters x3k-2, X3k-l, and X3k do not

in general exist-hence, the name "quasi-coordinates". However, since

parameters are needed to relate the relative orientation of the bodies

to the respective relative angular velocities, let the Euler parameters

introduced in the foregoing section be used for this purpose. Hence, if the

orientation of a typical body Bk relative to B is described by the four

parameters -i (i l".,4),the geometry and kinematics of the entire system

may be expressed in terms of the 4N Euler parameters 'ki (k-l,...,N; i-l,...,4),

the 3N relative angular velocity components w (k-l,...,N; i-1,2,3), and the

3N displacement components (k=l,...,N; i-l,2,3).

Angular Velocity

The angular velocity of a typical body Bk in the inertial frame R is

readily obtained by the addition formula as [38):

A A

Wk -j l .+ ' W (25)

where the relative angular velocities on the right side of this expression

are each with respect to the respective adjacent lower numbered bodies and

where the sum is taken over the bodies of the chain from B1 outward through

the branch containing Bk. The L(k) array introduced in the foregoing section

can be useful in computing this sum: Consider for example, the system shown

in Figure 1. The angular velocity of B9 is:

*Q9

,,.. . . .. :'" =.. ... . ... .... . .. L ~ . . .. I . - ' / ' ."' .. . -. - . .. . . . ,. , ... ... . .
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A~ in1~ + (26)

The subscript indices (ie. 9,6,5,1) may be obtained from L(k) as

follows: Consider L(k) as a function mapping the (k) array (See Equation (2))

into the L(k) array. Then, using the notation that L 0(k) - (k),

L (k) - L(L 0 (k), L2(k) - L(Ll(), .. o, LJ(k) L(LJ-l (k)), it is seen

(see Equation (1)) that:

L (9) - 9, L 1(9) - 6, L 2(9) -5, L 3(9) 1 (27)

Therefore, w9 may be written as:

3
-9 0 Tq q" LP(9) (28)

Hence, in general, the angular velocity of Bk may be written as:

A -

S , q- LP(k) (29)
P-O

where r is the index such that Lr( ) - 1 and it is obtained by comparing

LP(k) to 1. The index r represents the number of bodies from B1 to Bk in

that branch of the chain system Bk. For example, for the system of Figure 1.,

if k-9, r-3. Equation (29) is thus an algorithm for determining w.k once ^

and L(k) are known.

°XL
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" i !j1 a+ !j -j2 + f-j3 (21)

Following Kane and Wang [46], introduce 6N parameters y, (1-1,...,6N)

defined as:

yt- I. - 1,..., 6N (22)

where the first 3N of these are

Y3k-2 ' Wkl

Y3k-1 ' '2 (23)

A

Y3k ' (k3

and the remaining 3N are:

Y3(N+k)-2 - kl

Y3 (N4k) -l 'k2 (24)

Y3 (N+k) " ik3

0. AN--.
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7

j By examining Equations (20, (23), and (25) it is seen that 4k may be

written in the formI
j- k W Y n (30)

where there is a sum over the repeated indices and where 4) kgm (k-1,... ,N;

L-I,...,3N; m-i,2,3) form a block array of coefficients needed to express

(-k in terms of nor. In view of Equations (3), (16), (20), and (23),

it is seen that the elements of the Wk m array may be obtained from the SOK

transformation matrices. Moreover, it can be shown that the matching between

the elements of the 'kim and SOK arrays is solely dependent upon the body

connection array L(k).

To see this, consider for example the angular velocity of B4 of the

system of Figure 1: From Equation (25), ( 4 is

[ -T4 " W-1 + -3 + -W4 (

where from Equations (3), (20), and (23) W 1i W3 , and 4 may be written as:

1' A

1 Ylno1 + Y2 'no2 + Y3 !03 "YJ amj !Oma(2

T3 Y7  11 + Y8  12 + Y9 !13  Y6+J Solmh n (33)

4 Y10 !31 + Yll !32 + Y12 '33  + S03m n (34)

I
- -° -
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I

Hence, the w4 1m are:

6m al - 1,2,3

0 1 - 4,5,6

-4m S01- 9 
£ 

- 7,8,9 m - 1,2,3 (35)

S03_ 9 L - 10,11,12

0 t>12

where 6ij are the identity matrix components [47,48].

Next, consider that the results such as Equation (35) may be obtained for

the entire system of Figure 1. or Figure 2. from a table such as Table 1.,

where the "" entries of the "km array are the column of the transformation

matrices. Finally, note that the non-zero entries in a typical row,

say the k row of Table 1. are obtained as follows: Let P - L(k).

Then SOP is placed in the kth column of triplets of Xj" Next, let Q-L(P).

The SOQ is placed in the Pth column to triplets of x2 , etc. That is, SOM

is placed in column L- 1 (k) where M - Lj (k), J-l,...,r+l with r determined

from Lr (k) - 1.

Finally, it is interesting to note that the elements of the wk.m array

(and hence, the transformation matrix columns of Table 1.) are components

of the "partial rate of change of orientation vectors" as originally defined

by Kane (37].
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Angular Acceleration

I The angular acceleration of Bk in R may be obtained by differentiating

Equation (30). Noting that the nom are constant, this leads to:

ak (a y+u-k .)nOM (36)I

A table containing the wm can be constructed directly form the corresponding

table for the wkim" For example, for the system of Figure 1., such a

table is shown in Table 2.

Mass Center Velocities

The velocity and acceleration of the mass center Gk of a typical body

Bk (k-l,...,N) may be obtained as follows: Let !k locate Gk relative Ok

as shown in Figure 4. Since Ok is located relative to Qk by E k and if Qk is

lccated relative to 0j by the vector 3k (See Figure 4.), then by continuing

this procedure, Gk may ultimately be located relative to a fixed point 0 in

R, the inertial reference frame. For example, for Body B8 of Figure 2., the

position vector P of G relatie to 0 is:

P- 8 1l + q 5 +  5 + q6 + C 6 + 57 + -7 + 8 + -&8 + r. (37)

In general, for Body Bk' the position vector Ek of Bk relative to 0 is:



20

- [SOKYih rkh + Z SOSih (qsh + sh) -oi (38)I q~u.

I where s Lq(k), S - Lq+l(k), and u is the index such that LU(k) = I,

and where ql is 0. By differentiating, the velocity of Gk in R is obtained

I as:

I q=

+ SOS h 1sh ] noi (39)

By using Equations (11), (12), and (30), vk may be written in the form:

Zk = vkh, YXnor (40)

I
where vkI (kul...,I9; £-l9,..,6N; m-1,2,3) form a block array of coefficients

needed to express v in terms of n OM In view of Equation (39), the non-zero

Vk m are:

VkIW Wmht rkh + Z WS mh (%h + qsh)
q=0

I
(k-1,.°.,N; t-i1 ... ,3N; m-i,2,3) (41)

I
I
I
1
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I
where WKmh i defined as:

aWOK

WKt,32. 7 SOKph -empi Wki SOK ph (42)

and

vk(3N+Z)m - ; (k-l,...,N; 1-1,...,3N; m-1,2,3) (43)

Mass Center Accelerat ions

Similarly, by differentiation of Equations (40), the acceleration

of Gk in R is

am" (;k9m YR + vkgm YZ)nOM (44)

where the non-zero Vkm are, by Equations (41) to (43),

u-1

WK r + I[i(k-l*... *N; k-19....3N. m-1,2,3); m i. kh U , ht sh
qI0O

+ q + WSmh sh] (45)

where WkU is:

hLt -empi (wkt SOzph + Wki S6,Ph) (46)
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and

Vk(3N42Z)m k1. N 21,...,3N, m-'1,2,3) (47)



23

EQUATIONS OF MOTION

1
Consider again a general chain system such as shown in Figure 2., and

imagine the system to be subjected to an externally applied force field.

Let the force field on a typical body Bk' be replaced by an equivalent

force field consisting of a single force Fk, passing through Gk together

with a couple with torque Mk. Then Lagrange's form of d'Alembert's principle

leads to governing dynamical equations of motion of the form [38]:

FI + F* 0 - 1,...,6N (48)

FE (L-,...,6N) is called the generalized active force and is given

by:

F V k m Fm+ Mkm (49)

where there is a sum from 1 to N on k and from 1 to 3 on m, and where Fmk

and M are the components of F k and M with respect to nom . FI*

(1-1,...,6N) is called the generalized inertia force and is given by:

F Vkm k + wklm  * (50)

.m Z,+ V
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where the indices follow the same rules as in Equation (48), and where

F,4 and Mt are nor components of inertia forces, Fk* , and inertia torques,

M*, given by [38]:

IF _m k ak (no sum) (51)

and

* -k "-k -- x (_k W•0 . (no sum) (52)

where mk is the mass of Bk and Ik is the inertia dyadic of Bk

relative to Gk (k'l,...,N). (F*, with line of action passing through

Gk together with * are equivalent to the inertia forces on Bk [38].)

Through use of the shifter transformation matrices, Ik may be written

in the form:

" k '-k ,, n n (5 3)
Z1 Z lm om -on

By substituting Equations (36) and (44) into Equations (51) and (52)

and ultimately into Equation (47), the equations of motion may be written

in the form:
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a ,p (t-,...,6N) (54)

where there is a sum from 1 to 6N on p and where a and f are

given by:

atp m'k pm pVk + m 'pm 'kIn (55)

and

f L (F i + mk vktm vkqm Yq + Ik. Wtm. Ikqn Yq

+ enmh Ikmr 'kqu Wksr 'kin Yq Ys) (56)

where there is a sum from 1 to N on k, from 1 to 6N on q and s, and from

1 to 3 on the other repeated indices.

Recall that the first 3N yp are relative angular velocity components.

These may be related to the Euler parameters by N sets of first order

equations of the form of Equations (18).

Equations (54), (20), and the 4N equations of the form of Equations

(18) form a set of 13N simultaneous first-order differential equations for

the 6N yp, the 3N ki' and the 4N Euler parameters eki (h-1,...,N;

i-l,...,4). Since the coefficients a and f in Equations (54) are

algebraic functions of the physical parameters and the four block arrays

Sim, ktm' vktm and Vktm , computer algorithms can be written for the

numerical development of these governing equations. Moreover, once these

I
I
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arrays are developed, the system of equations consisting of Equations (54),

(20), and 4N equations of the form of Equations (18), may also be solved

* numerically by using one of the standard numerical integration routines

and a linear equation solver.

The development of these computer algorithms and the numerical development

of Equations (54) might proceed as follows: First, let the body connection

array L(k) (See Equation (1)) together with the geometrical and physical

parameters r k, -' L, and mk (See Equations (38), (51), and (52).) and

the applied forces and moments F and ! (See Equation (48).) be read into

the computer. (Let !v, k' and, if desired, f and be expressed in

terms of nk..) Next, from assumed initial values of eki form the

transformation matrix arrays SOK using Equations (15) and (5). Use these

arrays to express r k , §k9 k and possibly Fk and M in terms of n ok. Next

using L(k) and SOK write an algorithm, with Tables 1. and 2. as a guide, to

form i and wkI . ?or example, to obtain the non-zero w , observe that

if L(k) - p, then wkU - SOP21 (m-1,2,3; X-3p+l, 3p+2 , 3p+3). Then, if

L(p) - q, L2(k) - q and wktm - SO% (m-1,2,3; I-3q+l, 3q+2, 3q+3).

This assignment procedure is continued until unity is reached or r times

rwhere r is given by L (k) - 1 (See the remark following Equation (29).).

Skim and; km may then be obtained using Equations (40) to (47). Finally,vkim

numerical values of the coefficients atp and f of the governing differential

equations (54) may then be obtained from Equations (55) and (56). These

equations may then be integrated numerically to obtain incremental values to the

*initial values of the parameters yp, Cki, and xq (p-l,...,3N+3; k-l,...,N; i1-,2,3,4;

jand q-1,2,3), at the end of a time interval, say ti. New values of the

1lt-
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I
transformation matrix arrays SOK may then be obtained and the entire process

repeated until a history of the configuration and motion of the system is

determined.

Specific computer algorithms following this general procedure have

been written and validated. A listing together with a tape copy (Or card

deck) are available at reproduction cost from the authors.
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APPLICATION WITH HEAD-NECK SYSTEMS

Previous Simulation Efforts

Recently, there has been considerable interest in using the foregoing

procedures in the modelling of biodynamic systems. Specifically, there has

been interest in modelling the human body - and particularly, head-neck systems -

during periods of high acceleration, as experienced in vehicle accidents. This

interest stems from the fact that accident injuries, including both direct and

indirect (for example, "whiplash") impact, are basically mechanical phenomena.

The emphasis on modelling the head-neck system is stimulated by the belief

that as many as 60 - 70% of vehicle related accident fatalities are a direct

result of injuries to the head-neck system.

There are a number of head-neck simulation models discussed in the tech-

nical literature. Specifically, in 1971, Orne and Liu [60] developed a discrete-

parameter spine model which simultaneously accounts for axial, shear, and

bending deformation of the discs, for the variable size and mass of the vertebrae

and discs, and for the natural curvature of the spine. They also present an

extensive literature review of spine models prior to 1970. Later in 1971,

McKenzie and Williams (611 used the Orne-Liu model to develop a two-dimensional

discrete-parameter head-neck-torso model for "whiplash" investigation. A two-

dimensional mechanical linkage model simulating head-neck response to frontal

impact has been presented by Becker [62]. This model allows for elongation of

the neck. It concentrates the mass at the head mass center. Springs and

dampers are used to control the elongation of the model. A three-dimensional
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neck-torso linkage vehicle-occupant model has been developed by Bowman and

Robbins [63]. The model has two ball-and-socket joints and the neck can

elongate with the motion limited by joint stopping moments.

In addition to these computer models, there have also been developed a

number of anthropometric dummy models. (These are currently used extensively

by the automotive industry.) In 1972, Melvin, et.al. [64] presented a mech-

anical neck for authropometric dummies. The neck consists of three steel uni-

versal joints pinned into aluminum discs with shaped rubber discs around the

joints. The joints allow the neck to move in flexion, extension, and lateral

flexion but do not allow for either rotation or elongation. A mechanical neck

has also been presented by Culver, et.al. [65]. It consists of four ball-joint

segments and one pin-connected "nodding" segment. Viscoelastic resistive

elements inserted between the segments provide for bending resistance and

energy dissipation with the primary objective being to model flexion and ex-

tension responses.

In this part of the report, there is presented, as an application of the

foregoing procedures, a comprehensive, three-dimensional, head-neck computer

model which has 54 degrees of freedom and includes the effects of discs,

muscles, and ligaments. The model is developed by considering the skull and

vertebrae as a chain system of rigid bodies which may translate relative to

one another. The soft tissue effects of the discs, muscles, and ligaments

are modelled by nonlinear springs and dampers between the bodies. The model

is based primarily on the research of J. Huston and Advani [55,56,57].
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The balance of this part of the report contains a description of the

modelling itself and the development of the governing dynamical equations of

motion. This is followed by a comparison of results from numerical integration

of these equations, with available experimental data.

Head-Neck Modelling

A comprehensive presentation of the head-neck anatomy may be found in

references [66-73]. The anatomy is conveniently divided into two categories:

bones and soft tissue.

Bones

The largest and heaviest is the skull which consists of a large cranial I

cavity (enclosing the brain) and smaller bones of the face and jaw. The skull

is actually composed of 21 closely fitted bones. The other bones of the head-

neck system are seven cervical vertebrae (Cl-C7) which support and provide

mobility to the head. The first of these Cl, called the "atlas", supports the

skull. The second C2, called the "axis", is distinctive because of its adontoid

process (or axis) which rises perpendicularly to the vertebrae. The five i
remaining cervical vertebrae are roughly annular in shape and are similar to

each other with a slight increase in size going down from C3 to C7.

Soft Tissue

The soft tissue is composed primarily of the discs, the muscles, the

ligaments, and the brain. The discs provide the cushioning or separation for

Cr-
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the vertebrae. They are annular in shape. The ligaments connect the cervical

vertebrae to each other and thus allow for the gross and fine movement of the

head and neck. The muscles control the movement of the head and neck which may

be classified grossly as: flexion, extension, and rotation. The muscles

originate on the various cervical vertebrae, the skull, the spine, and the

shoulder bones. The brain tissue is basically four mass volumes composed of

two cerebral hemispheres in the upper half of the skull, the triangular shaped

cerebellum in the lower posterior and the brain stem in the center of the skull.

Modelling

The head-neck system is modelled by a system of 9 rigid bodies representing

the skull, vertebrae, and torso as shown in Figure 5. and springs and dampers

representing the discs, ligaments, and muscles. The masses, inertia matrices,

and overall geometry of the rigid bodies are adjusted to match the actual

human values (70]. Each body has 6 degrees of freedom and hence, the entire

system has a total of 54 degrees of freedom.

Following Orne and Liu [60] the discs are modelled in the axial direction

as two-parameter viscoelastic solids with the uniaxial force-displacement

relationship being:

F - (A/h)(d16 + d2 6) (57)

In bending and shear the discs are modelled as linear elastic solids. Using

the principles of strength of materials theory [70], the following force and

moment equations are developed:
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E I 1  2 6 xI
6EI1 26

F_- C- ) ( - - e )/P (58)x h2 h y 1

A 2 26 y + e)/P 
(59)

h

Fz A ) (d1 6z+d 6 (60)

!12 66
m1  _ ) [ ---z + (P +3) 6] (61)

EI1  -66
my _) I + (P,+3) y (62)

Mz - JGe /h (63)

where P1 and P2 are:

12EIlk
P1 W 1 + 1 h2 (64)G~2

and

12EI k
P2  1 + 1 (65)2 2GAh 2

where as shown in Figure 5., Z is in the axial (up direction, X is forward and

Y is to the left.

- - .--..
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The ligaments are modelled as non-linear elastic bands capable of exerting

I force only in tension. The force-displacement relation is taken as:

!
F =.6 + z 22 (66)1 2

The muscles are modelled as two-parameter, visco-elastic solids, which,

i llike the ligaments, only exert force when in tension. The force-displacement

j relation is taken as:

F =m6 + m2
6  (67)

The joint constraints (limiting the relative motion of the bodies) are

modelled as one-way dampers. The force-displacement and moment-rotation relation

are taken as:

-ca for 9>0

F=

o for <0

and (68)

-C6 for 6>0

M=

0 for 8<0

where the damping constant is

C + CI(X-Xmax) for X > Xmax

C -C 0  for Xmn < X < Xmax (69)

C0 + C1(X-Xmin) for X < Xmin
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where X,Xmax, and Xmin are the values of the displacement or rotations variable

and its corresponding maximum and minimum values.

The values of these various constants for the discs, ligaments, muscles,

and joints for the various directions and motion are difficult to specify pre-

cisely due to a lack of experimental data. However, the values for the discs

may be obtained from Markold and Steidal [74], Orne and Liu (60], and McKenzie

and Williams [61]. The ligament and muscle attach points may be obtained from

Francis [75], Lanier [76], and Todd and Lindala [77], with the spring and vis-

coelastic constants obtained from Nunley [78] and Close [79].

Governing Equations

ThL procedures developed in the foregoing parts of the report are directly

applicable to the model of Figure 5. including the simulated disc, muscle, and

ligament forces. Specifically, as noted earlier, the model has 54 degrees of

freedom (27 translation and 27 rotation). This leads to a system of 117 simul-

taneous first-order differential equations of the form of Equations (18), (20),

and (54). The disc, muscle, and ligament forces are included in the generalized

active forces FX of Equation (56).

Comparison with Experimental Data

It is difficult to obtain experimental data which is suitable for checking

the model. This is due to the expense and impracticality of using dummies,

cadavers, or animal surrogates and due to the limited experimental range with

human volunteers. However, several experiments have been conducted which may
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be used to obtain a validation of the model. In one of these, a seated cadaver

was subjected to head impacts by a rigid pendulum. Accelerometers were used t.,

measure the resultant frontal and occipital head impact forces and accelerations.

Using the impact force data as input, the acceleration was calculated using

the computer model. A comparison of the results for two of the frontal impact

experiments, 6-2 and 6-5 is shown in Figures 6.-9.

In the same set of experiments, high-speed cameras were used to measure

the acceleration, velocity, and displacement of the mass center. A comparison

of the results with those predicted by the computer model for experiments 6-1

and 6-2 are shown in Figure 10.

Finally, the model was checked against live human data generated by Ewing

and Thomas [33] using elaborate testing facilities. A comparison of the results

for the head angular acceleration, angular velocity, and angular displacement

is shown in Figures 11., 12., and 13.
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DISCUSSION AND CONCLUSIONS

The results of using the modelling procedures outlined herein and numerically

integrating the resulting governing differential equations (54) for a number

of other physical systems (in addition to head-neck systems) are reported and

discussed in References [40,41,49,50,51,52,531.

The application of Equations (54) with these systems, however, is based

on the use of relative orientation angles between the respective bodies of the

system as the generalized coordinates (xe) as opposed to the use of Euler

parameters and quasi-coordinates as outlined in the foregoing sections. A

problem which arises in the numerical solution of Equations (54) where orienta-

tion angles are used is that there always exists values of the angles and hence,

configurations of the system, for which the determinant of ak is zero. A

numerical solution will, of course, fail to converge at these singular configura-

tions of the system, and convergence is very slow for configurations in the

vicinity of a singularity. This problem is avoided by using Euler parameters

to relate the orientation geometry to the angular velocity.

The advantages of using Lagrange's form of d'Alembert's principle to

obtain the governing equations of motion for multi-body mechanical systems

has been exposited in detail in References [29] and [39]. Basically, this

principle has the advantages of Lagrange's equations or of virtual work in

that non-working internal constraint forces, between the bodies of the system,

are automatically eliminated from the analysis, and may therefore be ignored

in the formulation of the governing equations. The principle, however, has

the additional advantage of avoiding the differentiation of scalar energy

functions. Indeed, the differentiation required to obtain velocities and

-. . .. . . . . . . L . . . ' . .. . . . . . .. . . ... ... . , "1
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accelerations are performed by vector cross products and multiplication algor-

ithms - procedures which are ideally suited for numerical computation. As

with Lagrange's equations, Lagrange's form of d'Alembert's principle requires

the use of generalized coordinates to define the system geometry. The use of

Euler parameters to avoid problems with singularities, as discussed above,

leads naturally to the use of relative angular velocity components as the

generalized coordinate derivatives. This in turn leads to additional compu-

tational advantages as observed by Kane and Wang [46] and Likins [54]. Speci-

fically, by using relative angular velocity components as the principle para-

meters of the analysis, the coefficient matrices in the governing equations

can be obtained directly from the body connection array L(k) (See Tables 1.

and 2.).

The use of "relative" coordinates, that is, angular velocity components

of the bodies with respect to their adjoining bodies, as opposed to "absolute"

coordinates, that is, angular velocity components in inertial space, also con-

tributes to the computational advantage. In applications with specific geo-

metrical configurations [40,41,49-53], it is seen that the geometry is more

easily described in terms of relative coordinates.

Finally, the generalization to allow translation between the bodies of

the system makes the analysis applicable to a much broader class of problems

than was possible with those previous analyses which are restricted to linked

multibody systems. For example, with the head-neck system, the use of trans-

lation variables between the vertebrae is necessary to obtain a satisfactory

model of the system. Moreover, this generalization to include translation is

a natural extension of the analyses of [33,42,49,50,51].

- LA .... ... .,,., i ..
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Regarding the application to the head-neck system, Figures 7. - 13. show

there is agreement between the experimental results and those predicted by the

computer model. This is indeed encouraging and it suggests that this head-neck

model represents one of the most sophisticated models available. However, more

testing and refining needs to be done. Specifically, the three-dimensional

features of the model need to be further checked with experimental data. Also,

better experimental values for the soft tissue mechanical properties need to

be obtained. Finally, the effect of muscle time delay needs to be incorporated

into the model.

Beyond this, as injury criteria becomes better established, the model can

serve as an effective and economical tool for predicting injury in a variety

of high-acceleration/high-accident configuration environments. It could then

be used for the development and design of safety and restraining devices.

Finally, the entire analysis and the procedures outlined in this report

are developed with the intent of obtaining efficiencies in a computer or numeri-

cally oriented development and solution of the governing dynamical equations of

large multibody systems. As such, its most productive application is likely

to be with systems such as finite-segment biodynamic models, chains, cables,

robots, manipulators, teleoperators, etc.

L !
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